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Abstract. Autonomous robot guidance in dynamic environments requires, on 
the one hand, the study of relative motion of the objects of the environment 
with respect to the robot, and on the other hand, the analysis of the depth to-
wards those objects. In this paper, a stereo vision method, which combines both 
topics with potential utility in robot navigation, is proposed. The goal of the ste-
reo vision model is to calculate depth of surrounding objects by measuring the 
disparity between the two-dimensional imaged positions of the object points in 
a stereo pair of images. The simulated robot guidance algorithm proposed starts 
from the motion analysis that occurs in the scene and then establishes corre-
spondences and analyzes the depth of the objects. Once these steps have been 
performed, the next step is to induce the robot to take the direction where ob-
jects are more distant in order to avoid obstacles. 

1   Introduction 

Perception is a crucial part of the design of mobile robots. We want mobile robots to 
operate in unknown, unstructured environments. To achieve this goal, the robot must 
be able to perceive its environment sufficiently to allow it operate with that environ-
ment in a safe way. Most robots that successfully navigate in unconstrained environ-
ments use sonar transducers or laser range sensors as their primary spatial sensor [1] 
[2] [3]. On the hand, autonomous navigation [4] can be divided up into two elements: 
self-localization, and obstacle avoidance [5] [6]. Self-localization is always necessary 
if the target cannot be guaranteed to be in the field of view of the robot's sensing de-
vice. Self-localization using vision is not the hardest part of navigation because only a 
few visual cues are required. Obstacle avoidance is a lot more difficult, because it is 
in general not possible to guarantee that an obstacle will be detected.  

There has been some work on the control strategies to be used where the required 
path is known and obstacle positions are known with some level of uncertainty [7]. 
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Most research has concentrated on using the concept of free-space [8]. A free-space 
area is a triangular region with the cameras and a fixated scene feature as its vertices. 
If the robot moves while holding the feature in fixation, a free-space volume will be 
swept out. 

The goal of the stereo vision method with application in mobile robotic is to calcu-
late depth to surrounding objects by measuring the disparity between the two-
dimensional imaged positions of the objects points in a stereo pair of images. Since a 
single 3D point will project differently onto a camera’s sensor when imaged from 
different locations, the 3D world position of the point can be reconstructed from the 
disparate image locations of these projections. Many algorithms have been developed 
so far to analyze the depth in a scene. Brown et al. [9] describe a good approximation 
to all of them in their survey article.  

Depth analysis is faced by different methods; but all of them have as a common 
denominator that they work with static images and not with motion information. In 
this paper, we have chosen as an alternative not to use direct information from the 
image, but rather the one derived from motion analysis. This alternative should pro-
vide some important advantages when working with mobile robots in dynamic envi-
ronments. Autonomous robot guidance in dynamic environments requires, on the one 
hand, the study of relative motion of the objects of the environment with respect to 
the robot, and on the other hand, the analysis of the depth towards those objects.  

In this paper, firstly a stereo vision method is proposed. Then, we present a simula-
tion of a robot that uses motion-based and correlation-based stereo vision to navigate 
and explore unknown and dynamic indoor environments. The system uses as input the 
motion information of the objects present in the scene, and uses this information to 
perform a depth analysis of the scene. After estimating the scene depth distribution, 
an algorithm, which imposes the search for maximum depth criteria to guide an 
autonomous robot, is proposed. Keeping this purpose in mind, the algorithm tracks 
those areas where depth is maximal. 

2   Motion-Based Stereovision Method 

Our argumentation is that motion-based segmentation facilitates the correspondence 
analysis. Indeed, motion trails obtained through the permanency memories [10] [11] 
charge units are used to analyze the disparity between the objects in a more easy and 
precise way.  

2.1   Accumulative Computation for Motion Detection 

The permanency memories mechanism considers the jumps of pixels between grey 
levels, and accumulating this information as a charge. This representation is also 
called accumulative computation, and has already been proved in applications such as 
moving object shape recognition in noisy environments [12] [13], moving objects 
classification by motion features such as velocity or acceleration [14], and in 
applications related to selective visual attention [15]. The more general modality of 
accumulative computation is the charge/discharge mode, which may be described by 
means of the following generic formula: 
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The temporal accumulation of the persistency of the binary property P[x,y,t] meas-
ured at each time instant t at each pixel [x,y] of the data field is calculated. Generally, 
if the property is fulfilled at pixel [x,y], the charge value at that pixel Ch[x,y,t] goes 
incrementing by increment charge value C up to reaching Chmax, whilst, if property P 
is not fulfilled, the charge value Ch[x,y,t] goes decrementing by decrement charge 
value D down to Chmin. All pixels of the data field have charge values between the 
minimum charge, Chmin, and the maximum charge, Chmax. Obviously, values C, D, 
Chmin and Chmax are configurable depending on the different kinds of applications, 
giving raise to all different operating modes of the accumulative computation.  

Values of parameters C, D, Chmax and Chmin have to be fixed according to the ap-
plications characteristics. Concretely, values Chmax and Chmin have to be chosen by 
taking into account that charge values will always be between them. The value of C 
defines the charge increment interval between time instants t-1 and t. Greater values 
of C allow arriving in a quicker way to saturation. On the other hand, D defines the 
charge decrement interval between time instants t-1 and t. Thus, notice that the charge 
stores motion information as a quantified value, which may be used for several classi-
fication purposes. In this paper, the property measured in this case is equivalent to 
“motion detected” at pixel of co-ordinates [x,y] at instant t.  
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 Initially the charge for a pixel is the minimum permitted value. The charge in the 
permanency memory depends on the difference between the current and the previous 
images grey level value. An accumulator detects differences between the grey levels 
of a pixel in the current and the previous frame. When a jump between grey levels 
occurs at a pixel, the charge unit (accumulator) of the permanency memory at the 
pixel’s position is completely charged (charged to the maximum charge value). After 
the complete charge, each unit of the permanency memory goes decrementing with 
time (in a frame-by-frame basis) down to reaching the minimum charge value, while 
no motion is detected, or it is completely recharged, if motion is detected again. Thus, 
“motion detected” may be obtained by means of the following formula: 
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which is easily obtained as a variation in grey level band between two consecutive 
time instants t and t-1. In order to diminish the effects of noise due to the changes in 
illumination in motion detection, variation in grey level bands at each image pixel is 
treated as follows: 
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where GL[x,y,t] is the grey level of pixel (x,y) at t, 
 n is the number of grey level bands, 
 GLmax is the maximum grey level value, and 
 GLmin is the minimum grey level value. 

2.2   Disparity Analysis for Depth Estimation 

The retrieval of disparity information is usually a very early step in image analysis. It 
requires stereotyped processing where each single pixel enters the computation. In 
stereovision, methods based on local primitives as pixels and contours may be very 
efficient, but are too much sensitive to locally ambiguous regions, such as occlusions 
or uniform texture regions. Methods based on areas are less sensitive to these prob-
lems, as they offer an additional support to do correspondences of difficult regions in 
a more easy and robust way, or they discard false disparities. Although methods based 
on areas use to be computationally very expensive, we introduce a simple pixel-based 
method with a low computational cost. 

In our case, the inputs to the system are the permanency memories of the right and 
left images of the stereo video sequences. When an object moves in the scene, the 
effect in both cameras is similar to the charge accumulated in the memory units. If 
little time has elapsed since an object moved, the charge will be close to the maxi-
mum value in both permanency memories, and if a lot of time has elapsed since it 
moved, the charge would be much lower or even equal to the minimum value in both 
memories. Thus, we may assume that units with equal instantaneous charge values in 
their permanency memories correspond to the same objects. 

For each frame of the sequence, the right permanency memory is fixed in a static 
way, and the left permanency memory will be displaced pixel by pixel on the epipolar 
restriction basis over it, in order to analyze the disparities of the motion trails. By 
means of this functionality, for all possible displacements of one permanency memory 
over the other, the correspondences between motion trails are checked and the dispari-
ties are assigned. In order to know up to what extent we have to displace one image 
over the other looking for correspondences, we have to take into account the disparity 
restriction. This restriction tells us that motion trails cannot raise a disparity value 
greater than a maximum permitted disparity.  

Once the last displacement according to the disparity restriction has been calcu-
lated, each unit analyzes which is the displacement value where the value of its charge 
variable has been maximal. This displacement value is assumed the most confident 
disparity value for the pixels that form the region containing the pixel. This way the 
unicity restriction is imposed, as for each processing unit the final value has only one 
unique disparity value. This is a constraint based in the geometry of the visual system 
and in the very nature of the objects of the scene. It tells us that to any pixel of the 
right image there is only one corresponding pixel on the left image. This means that, 
if there are several pixels candidates to correspondents, we have to choose the most 
confident one. Once motion trails of the moving objects that appear in the stereo se-
quence provide the correspondences, from their disparity and the system’s geometry it 
is possible to estimate the depth of the elements in the scene. 
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3   Simulation for Autonomous Robot Navigation 

For sure, the precision of the depth estimation is not too accurate due to the horizontal 
and vertical discreetization of the cameras, but the information is good enough for the 
autonomous navigation task. From this perception, a system capable of analyzing the 
depth of the situation of an object enables controlling the traction system to direct it 
towards the region more far away from the cameras. 

The robot guidance algorithm proposed starts from the motion analysis that occurs 
in the scene and then establishes correspondences and analyzes the depth of the ob-
jects, as described in the previous sections. Once these steps have been performed, the 
next step is to induce the robot to take the direction where objects are more distant, in 
order to avoid obstacles. 

The algorithms have been tested in a simulated scenario, a square corridor (see fig-
ure 1). On the external walls of the corridor, there are some square figures simulating 
windows and doors, whilst on the interior walls there are only doors. The reason for 
the inclusion of doors and windows is to have some objects moving when the cameras 
advance on the robot. In this scenario, the robot walks through the interior of the  
corridor.  

 
  

       
(a)     (b) 

Fig. 1. Corridor scenario. (a) Aerial view. (b) In the interior of the corridor 

The corridor scenario is composed of 500 image stereo frames. 125 pairs of frames 
are enough for studying a straight stretch and a turn on one corner. We have separately 
analyzed the straight stretches and the turns. The values of the main parameters used in 
this simulation were number of grey level bands n = 8, maximum charge value Chmax = 
255, minimum charge value Chmin = 0, and charge decrement interval D = 16. 

3.1   Analysis of the Turns in the Three-Dimensional Environment 

Figure 2 shows the result of applying our algorithms in the moment when the robot 
has to turn one of the corners. In column (a) some input images of the right camera 
are shown, in column (b) we have the images segmented in grey level bands, in col-
umn (c) motion information as represented in the right permanency memory is  
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    350 

    355 

    360 

    365 

    370 

    375 

   380 

(a)      (b)           (c)             (d) 

Fig. 2. Results for the turns in the corridor scenario (frames 350 to 380). (a) Input images of the 
right camera. (b) Images segmented in grey level bands. (c) Motion information in right perma-
nency memory. (d) Scene depth 
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    280 

    300 

    320 

    330 

    340 

    350 

(a)      (b)           (c)             (d) 

Fig. 3. Results for the straight stretch in the corridor scenario (frames 265 to 350). (a) Input 
images of the right camera. (b) Images segmented in grey level bands. (c) Motion information 
in right permanency memory. (d) Scene depth 
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offered, and in column (d) the final output, that is to say, the scene depth as detected 
by the robot, is presented. 

When looking at the results offered on figure 2, we may make some remarks. 
Firstly, between frames 350 and 365, as the robot is turning, all objects of the envi-
ronment appear displaced in the image, offering long trails in the permanency mem-
ory. These motion trails are analyzed to calculate the object’s depths in the output 
image. In frames around the 370, the end of the corridor appears again. This issue 
causes a great impact in the permanency memory. This effect is interpreted by the 
algorithm to provide the depth of the scene, which gives very high values as it may be 
appreciated at the output image. From frame 375 on, the corridor does not move in 
horizontal direction any more. Nevertheless, the effect of the previous turn is still 
present in the permanency memory. Thus, the depth may still be calculated easily. 
Between frames 375 and 380, the horizontal movements of the end of the corridor are 
losing strength in the permanency memory. Nevertheless, the algorithm contains 
sufficient information to estimate its depth. From frame 380 on, we are in the situa-
tion of straight stretches.  

3.2   Analysis of the Straight Stretches in the Three-Dimensional Environment 

In this case, the walking of a robot through a straight-line corridor is simulated. The 
proper movement of the robot enables considering the static objects in the scenario as 
elements moving towards the cameras. Figure 3 shows the results of applying the 
algorithms to the straight stretch in the simulated three-dimensional environment.  

In frame 265, although in the input image the first door present in the straight 
stretches of the corridors does not appear any more, its presence is still under consid-
eration in the permanency memory. This is why its depth is calculated in the output 
image. Also in the output image corresponding to frame 265, the end of the corridor 
appears with a much lower illumination due to its remoteness. Associated to frame 
280, the central smooth walls do not offer any motion information. That is the reason 
why there is no information in the permanency memory and in the output image. 
Again, in this frame the doors and the windows of the end appear in dark grey color. 
Gradually, from frame 300 to frame 350, the color of the objects at the end gets 
clearer due to the approach motion to the cameras. 

3.3   General Remarks 

From the results obtained in figures 2 and 3, there are several general conclusions and 
remarks we may consider. Firstly, motion analysis in the z-axis, obtained by accumu-
lative computation from motion detection and disparity analysis from depth estima-
tion, enables knowing which objects are approaching the cameras or moving away. 
This is really important in autonomous robot navigation, and especially for the obsta-
cle avoidance task. In second place, our system enables the generation of a sort of 
three-dimensional map of the robot’s environment. This way, objects that are static by 
nature are detected due to the relative motion of the cameras with respect to the envi-
ronment. 
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4   Conclusions 

In this paper, we have introduced a method for robot navigation that uses motion-
based and correlation-based stereo vision to explore unknown and dynamic indoor 
environments. The method uses as input the motion information of the objects present 
in the scene, and uses this information to perform a depth analysis of the scene. For 
the purpose of autonomous robot navigation, we have chosen the alternative not to 
use direct information from the image, but rather to exploit all information derived 
from motion analysis. This alternative provides some important advantages when 
working with mobile robots in dynamic environments. The idea of stereo and motion 
computation on grouped grey level regions may be compared to the work of Matas on 
maximally extremal regions [16], which has proved to be very effective. 

Firstly, through motion information it is easier to use correspondences than by grey 
level information of the frames. The results are also more accurate and robust. This is 
due to the instantaneous motion features, such as position, velocity, acceleration and 
direction of the diverse moving objects that move around the robot. Thus, motion 
information of an object will be different from any other moving object’s one. None-
theless, when observing motion features of a concrete object in both stereo sequences 
at the same time instant, we appreciate that these features are extremely similar. This 
is the reason why it is easy and robust to establish correspondences between the mo-
tion information of an object at the right image respect to the object at the left image. 
There exist very few ambiguity possibilities. A second advantage of using motion 
information relates to the nature of static objects. A translation or turn movement of 
the proper robot makes that walls or furniture move in relation to the robot, and of 
course respect to the observing cameras. This relative motion is different if the objects 
are close to or far away from the robot. Therefore, it will be very easy to discriminate 
among objects in the scene far away or close to the robot. The method proposed takes 
the advantage of algorithms based on pixels, as its output is a dense map of dispari-
ties. Besides, it also takes the advantage of algorithms based on higher level primi-
tives by putting into correspondence complete regions of the image – see, permanency 
memories - and not only pixels.  
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